Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells
نویسندگان
چکیده
Anyone who has used a light microscope has wished that its resolution could be a little better. Now, after centuries of gradual improvements, fluorescence microscopy has made a quantum leap in its resolving power due, in large part, to advancements over the past several years in a new area of research called super-resolution fluorescence microscopy. In this Primer, we explain the principles of various super-resolution approaches, such as STED, (S)SIM, and STORM/(F)PALM. Then, we describe recent applications of super-resolution microscopy in cells, which demonstrate how these approaches are beginning to provide new insights into cell biology, microbiology, and neurobiology.
منابع مشابه
Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures.
The optical diffraction limit has been the dominant barrier to achieving higher optical resolution in the fields of microscopy, photolithography, and optical data storage. We present here an approach toward imaging below the diffraction barrier. Through the exposure of photosensitive films placed a finite and known distance away from nanoscale, zero-mode apertures in thin metallic films, we sho...
متن کاملNoninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI
Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...
متن کاملIntroduction to super-resolution microscopy.
In this review, we introduce the principles of spatial resolution improvement in super-resolution microscopies that were recently developed. These super-resolution techniques utilize the interaction of light and fluorescent probes in order to break the diffraction barrier that limits spatial resolution. The imaging property of each super-resolution technique is also compared with the correspond...
متن کاملBreaking the diffraction barrier in fluorescence microscopy by optical shelving.
We report the breaking of the diffraction resolution barrier in far-field fluorescence microscopy by transiently shelving the fluorophore in a metastable dark state. Using a relatively modest light intensity of several kW/cm(2) in a focal distribution featuring a local zero, we confine the fluorescence emission to a spot whose diameter is a fraction of the wavelength of light. Nanoscale far-fie...
متن کاملBreaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy
We propose a novel physical mechanism for breaking the diffraction barrier in the far field. Termed fluorescence emission difference microscopy (FED), our approach is based on the intensity difference between two differently acquired images. When fluorescence saturation is applied, the resolving ability of FED can be further enhanced. A detailed theoretical analysis and a series of simulation t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 143 شماره
صفحات -
تاریخ انتشار 2010